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Abstract

Asymptotic regimes of geophysical dynamics are described for di�erent Burger number limits. Rotating

Boussinesq equations are analyzed in the asymptotic limit of strong strati�cation in the Burger number

of order one situation as well as in the asymptotic regime of strong strati�cation and weak rotation. It

is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the

full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with ver-

tical shearing of this invariant are deduced. Statistical dephasing e�ects induced by turbulent processes

on inertial-gravity waves are evidenced. The `split' of the energy transfer of the vortical and the wave

components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero

to in�nity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy

spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the

anisotropic rotation/strati�cation time scale which depends on the vertical aspect ratio parameter. In-

termediate asymptotic regime corresponding to strong strati�cation and weak rotation is analyzed where

the e�ects of weak rotation are accounted for by an asymptotic expansion with full control (saturation)

of vertical shearing. The regularizing e�ect of weak rotation di�ers from regularizations based on vertical

viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and

geostrophic departure) are obtained.

�This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681-0001

i



1 Introduction

The turbulent 
ows that are subject to rotation and strati�cation have many important applications in

geophysics and engineering (Fernando and Hunt, 1996; Hop�nger, 1989). An important class of geophysical


ows can be characterized as strongly rotating and strongly strati�ed with both e�ects playing an important

role in the dynamics. This is the so called Burger number of order one regimes where the e�ects of rotation

and strati�cation enter at the same order in asymptotics (McWilliams 1985). One of the major di�culties

encountered in understanding dynamics of geophysical 
ows is the in
uence of the oscillations generated by

the rotation and strati�cation. One major e�ect of rotation and strati�cation is through \phase scrambling"

for the wave phase. In this paper rotating Boussinesq equations are analyzed in the asymptotic limit of

strong strati�cation in the Burger number of order one situation as well as in the asymptotic regime of

strong strati�cation and weak rotation.

The very useful and thought provoking multi-scale analyses of rotating/strati�ed turbulence is presented

in Riley et al. (1981), Lilly (1983), McWilliams (1985). In particular, they argue that the velocity �eld

of a rotating, stably strati�ed 
uid may be regarded as a superposition of waves which are modulated on

the longer turbulence time scale. In our approach, the collective contribution to the dynamics made by

waves is accounted for by rigorous KAM (Kolmogorov-Arnold-Moser) type theory and rigorous estimates

of wave resonances and quasi-resonances via small divisors analysis. Our theory handles rigorously 3-waves

resonances, but goes much deeper into the structure of quasi 3-wave resonances and their contributions.

This mathematical approach was initiated in Babin, Mahalov and Nicolaenko (henceforth BMN) (1995),

Mahalov and Marcus (1995) in the context of geophysical 
ows. In Bartello (1995), the relative physical

importance of di�erent resonances is discussed in depth. In this paper we present the physical predictions

and implications of our rigorous mathematical analysis. Interactions between internal waves and the vortical

(quasi-geostrophic) modes remain as one of the important questions to be addressed by strong interaction

theory (M�uller, Holloway et al., 1986; Warn, 1986; Farge and Sadourny, 1989; Lelong and Riley, 1991).

The governing 
ow equations for rotating stably strati�ed 
uids under the Boussinesq approximation are

@tU+U � rU+ 2
0e3 �U = �rp+ �1 e3; r �U = 0; (1.1)

@t�1 +U � r�1 = �N2
0U

3; (1.2)

where rotation and mean strati�cation gradient are aligned parallel to e3 = [0; 0; 1]. Here U = (U1; U2; U3) is

the velocity �eld and �1 is the buoyancy variable; N0 is the Brunt-V�ais�al�a frequency for constant strati�cation

and 
0 is the frequency of background rotation, f0 = 2
0. We focus on inviscid Eqs. (1.1)-(1.2) or with

small uniform viscosities.
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Now we introduce useful non-dimensional parameters. Let Uh be a characteristic horizontal velocity

scale. Let H and L be vertical and horizontal length scales and a3 = H=L is the aspect ratio parameter. We

de�ne Froude numbers based on horizontal and vertical scales:

Fh = Uh=LN0 � 1=N; Fv = Uh=HN0 = Fh=a3: (1.3)

The classical Rossby and anisotropic Rossby number are de�ned as follows

Ro = Uh=2L
0 � 1=2
 � 1=f; Roa = a3 Ro: (1.4)

The time is dimensionalized using the turbulence time scale L=Uh. In the Burger O(1) regime Roa � Fh.

We are not taking a3 ! 0; rather its value is �xed by shallowness of the atmosphere, a3 � 5� 10�3 to 10�2

for synoptic scales. Its smallness e�ectively downsizes Roa � 5� 10�4 to 10�3, as Ro � 0:1 in midlatitudes.

For mesoscales, L � 100km, a3 � 10�1 and Roa � 10�2. The anisotropic Rossby number Roa or/and the

vertical Froude number Fv control our uniform error estimates.

The Burger number characterizes relative importance of the e�ects of rotation and strati�cation (McWilliams,

1985):

Bu = Ro2a=F
2
h � Ro2=F 2

v � N2a23=f
2 = N2

0 a
2
3=f

2
0 : (1.5)

In Eqs. (1.3)-(1.4) f = Ro�1 and N = F�1h are dimensionless rotation and Brunt-V�ais�al�a parameters,

respectively. The relative importance of rotation/strati�cation is measured by the Burger number with

Bu << 1 corresponding to rotation dominated and Bu >> 1 corresponding to strati�cation dominated


ows. Herring and M�etais (1989) observed horizontal layering of the velocity �eld in numerical simulations

of strati�ed turbulence, while Bartello et al. (1994) noted the formation of quasi-two-dimensional structures

in rotating turbulence.

Fourier series will be used in this paper to represent physical �elds in a parallepiped [0; 2�]� [0;2�=a2]�
[0; 2�=a3], 0 < a2 � 1. We denote k2=a2 by �k2, k3=a3 by �k3. Following Bartello (1995), it is useful

to distinguish between three sets of wavevectors �k = (k1; k2=a2; k3=a3), j�kj2 = k21 + k22=a
2
2 + k23=a

2
3: the

barotropic set fk : k3 = 0g, the set with only vertical variability fk : k1 = k2 = 0g, and the remaining

baroclinic vectors fk : k21 + k22 6= 0; k3 6= 0g. Then the operation of vertical averaging corresponds to

projection on barotropic �elds; the operation of horizontal averaging corresponds to projection on �elds with

only vertical variability. In this paper as well as in our previous work (BMN, 1996a, b, d) we emphasize the

important role of operations of vertical and horizontal averaging in investigations of rotating and strati�ed


ows.

Regimes of geophysical dynamics presenting the global picture for small Froude or Rossby numbers are

shown in Figure 1 which summarizes the physical implications of our mathematical analysis. Since we are
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Fig. 1.  Geophysical Dynamics: the global picture for small Froude or small Rossby regimes.
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not taking a3 ! 0, either Fh or Fv can be used in description of asymptotic regimes. Then Fr denotes

either of these numbers. The rotation dominated case corresponding to Roa ! 0, Bu ! 0 and Fr �nite

was considered in BMN (1995), Zhou (1995), BMN (1996a, c, d, e), Mahalov and Zhou (1996) (Figure

1, vertical axis). In this case we proved the generalized Taylor-Proudman theorem establishing splitting

between vertical averages of U, �1 (two dimensional- four component, 2D-4C barotropic �elds) and reduced

ageostrophic �eld. Following Reynolds and Kassinos (1996) 2D-4C refers to �elds with four components

depending on two variables x1 and x2; 3D-2C refers to �elds with two components depending on three

variables x1, x2 and x3 etc. By splitting we mean that the barotropic �eld decouples from the ageostrophic

one, without feedback from the latter onto the former, to the lowest order. In the limit N ! 0, the usual

quasi-geostrophic �eld does reduce to vertically averaged �elds; this is what is meant by \geostrophic" in this

limiting context. In this limit vertical shearing is fully controlled which is re
ected in adiabatic invariants

associated with vertical shearing (exact conservation laws in reduced equations), with Uy = (U; �1)

d

dt

Z
j@U

y

@x3
j2dx1dx2dx3 = 0: (1.6)

In the limit N ! 0 the temperature decouples from the dynamics and behaves as a passive scalar. The

dynamics of vertically averaged velocity �elds reduce to classical 2D-3C Euler equations and are subject

to inverse energy cascades in U1, U2 as in 2D turbulence. For Bu ! 0 we have shown rigorously that

energy cascades for the ageostrophic (AG) �eld are completely frozen in x3 and the dynamics is pure phase

turbulence (BMN, 1996a,c,d,e); freezing of energy cascades in x3 for the \baroclinic" component follows

from (1.6). In pure phase turbulence, the amplitudes of the ageostrophic modes remain constant in absolute

values; turbulent dynamics are restricted to the phases of the ageostrophic modes. The ageostrophic �eld is

phase locked to phases associated with vertically averaged vertical vorticity and vertical velocity which are

advected by 2D turbulence of vertically averaged �elds. There is no slaving of the amplitudes of ageostrophic

modes by the 2D turbulence, only phase locking. We calculated Doppler phase shifts induced by turbulence

of vortical (vertically averaged) �elds on inertio-gravity waves in this limit. In the case of 3D rotating Euler in

the small anisotropic Rossby number situation we described regimes with no energy 
ux in the ageostrophic

(AG) component and formation of KAM-type regimes with frozen in x3 ageostrophic cascades (pure phase

turbulence, frozen turbulence). Similar freezing of energy cascades was observed by Farge (1988) in the

context of rotating shallow-water equations and in Pushkarev and Zakharov (1996) in numerical experiments

describing turbulence of capillary waves.

Next is the regime of strong rotation and weak strati�cation as shown in Figure 1. Besides the operation

of vertical averaging there is a piece of 3DQG (quasi-geostrophic, Pedlosky 1987) which plays an important

role in the dynamics. It is formally obtained by expanding 3DQG equations in a small parameter N=f .
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This procedure is similar to the one described in Section 4 for the regime of strong strati�cation and weak

rotation. The corresponding reduced equations, higher order corrections and mathematical convergence

results for the case of balanced and unbalanced initial data are presented in Avrin, Babin, Mahalov and

Nicolaenko (henceforth ABMN) (1996).

As the e�ects of strati�cation are increased further (see Fig. 1) AG cascades become possible. In the

limit of strong rotation and strong strati�cation corresponding to Roa ! 0, Fr ! 0, but Bu = O(1)

we established splitting between 3DQG and the reduced ageostrophic �eld (BMN, 1996b) con�rming the

similar splitting for rotating shallow-water equations which we obtained in Mahalov and Marcus (1995)

and for rotation-dominated case in BMN (1995), (1996a). Again, by splitting we mean that the QG �eld

decouples from the ageostrophic one. Dynamics of AG further splits along uncoupled resonant quadruplets of

Fourier rays with AG energy conserved on each resonant quadruplet of rays. Energy cascades are now allowed

(unfrozen) for the ageostrophic �eld but they are restricted to families of 4 rays in Fourier space. Energy

transfers (direct and inverse cascades) are not prohibited but restricted on uncoupled families of resonant

four rays for AG �eld. Direct energy cascades of AG �eld provide mechanism for nonlinear geostrophic

adjustment. This is fundamentally di�erent from the rotation dominated regimes where AG cascades are

frozen. Spectral di�erential molecular viscosities for QG and AG �elds with explicit dependence on the

rotation/strati�cation parameters behave di�erently. Let �1 and �2 be the kinematic viscosity and the heat

conductivity, respectively; the ratio �1=�2 is known as the Prandtl number. Through a simple computation

of 2-wave resonances in the Craya-Herring basis (Lesieur, 1987) the e�ective di�erential spectral molecular

viscosities �QG and �AG are given by

�QG(n) = �2 + (�1 � �2)
j�n0j2

j�n0j2 + �2�n23
; �AG(n) = �1 + (�2 � �1)

j�n0j2
j�n0j2 + �2�n23

(1.7)

where � = f=N , j�n0j2 = n21 + n22=a
2
2. It shows that dissipation a�ects QG and AG �elds di�erently. This

impacts on direct numerical simulations of QG �elds in the context of numerical simulations of atmospheric


ows.

Partial control of vertical shearing is obtained allowing us to prove long time existence of solutions of

inviscid Boussinesq equations (BMN, 1996b and Section 6). Also, a 
ow which is initially wave dominated

remains wave dominated even through decay (con�rming M�etais et al., 1996). In Section 3 we show that

horizontally averaged buoyancy variable ��1 is an adiabatic invariant (this result is true for all resonances

including 3 wave resonances); we calculate Doppler phase corrections associated with d
dx3

��1 to a linear pro�le

(constant N0). This con�rms and generalizes the work of Legras (1980) on phase shifts who showed the

existence of statistical dephasing e�ects induced by turbulent processes on Rossby waves. Frequency shifts

induced by turbulent processes on inertial waves were calculated in BMN (1996a); the case of frequency

shifts induced on waves in rotating shallow-water equations was considered in BMN (1996c, e). As the
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e�ects of strati�cation are increased (see Fig. 1) vertical shearing dynamics in the ageostrophic �eld increase

and is conveniently characterized using the divergent velocity potential �(t; x1; x2; x3) given by the formula

� = (��h)�1@U3=@x3 which is coupled to geostrophic departure. The geostrophic departure �r2
h�1 +

f @
@x3

curlU � e3 characterizes imbalance in the vertical motion or omega equation (Eqs. (1.16)-(1.17)). Up

to a normalization, the divergent velocity potential �, the geostrophic departure and 3DQG mode form the

Craya-Herring cyclic basis which is used in this paper to represent physical �elds. This is further described

below.

In the inviscid regime Fr! 0, Roa = O(1), Bu! +1 (Figure 1, horizontal axis) we prove that there is

no bound on vertical shearing associated with the dynamics of 3D-2C (3 dimensional, 2 components) decou-

pled pancakes (parametrized in x3) with di�erent pressures at every level; this leads to unbalanced dynamics

at the lowest order. There is no saturation of the exponential build-up of vertical enstrophy (in small vertical

scales) for AG dynamics as the latter is coupled to the quasi 2D �eld thru @U1
Q2D=@x3, @U

2
Q2D=@x3. The

major problem is lack of boundedness of vertical shearing in quasi 2D equations (Lilly, 1983). We show that

horizontally averaged �U1(x3), �U2(x3), ��1(x3) are adiabatic invariants providing a feedback onto AG turbu-

lence. �U1, �U2 are adiabatic invariants only if 
 = 0; otherwise, they undergo rigid 
- rotation (this result

holds for all resonances including the 3 wave resonances). However, these adiabatic invariants are not enough

to saturate vertical shearing. Worse the lack of boundedness of @U1
Q2D=@x3, @U

2
Q2D=@x3 leads to explosive

exponential growth of the AG dynamics. Of course, control of vertical shearing can be achieved trivially by

introducing vertical viscosity; however, this corresponds to a non-physical laboratory set-up rather than the

real atmosphere (A. Majda, private communication), or a poorly-resolved (in x3- scales) numerical model

(P. Bartello, private communication).

In the intermediate asymptotic regime corresponding to strong strati�cation and weak rotation (Bu !
+1, f=N small) the e�ects of weak rotation on the dynamics are accounted for by an asymptotic expansion

in a small parameter � = f=N (Section 4). Full saturation of vertical shearing is obtained for all times.

Equations describing balanced dynamics are intermediate between 3DQG equations valid in the regime Bu =

O(1) and quasi-2D decoupled pancakes without any control of vertical shearing (Lilly, 1983). In this paper we

show how weak rotation regularizes vertical shearing and calculate its e�ects on AG dynamics. Our reduced

equations have a conservation law associated with vertical shearing which allows to control AG vertical

scales for all times. There is no need to resort to vertical viscosity as the principal stabilizing mechanism

(Reynolds number Re � 1012 in atmospheric 
ows). Two scalar decoupled equations for ageostrophic

components (divergence velocity potential and geostrophic departure) are obtained. These equations have

coe�cients depending on regularized quasi-2D �elds and can be used for more accurate and robust numerical

simulations of geophysical 
ows in the regime of strong strati�cation and weak rotation. AG dynamics is
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driven by regularized vertical shearing of the pancakes.

In this paper we emphasize physical predictions which follow from rigorous mathematical analysis of

Boussinesq equations in the strongly rotating/strati�ed Bu = O(1) regime as well as in the asymptotic

regime of strong strati�cation and weak rotation. The mathematical theory is based on rigorous small divisor

estimates and KAM type (Kolmogorov-Arnold-Moser) theoretical considerations to rigorously control wave

resonances, especially the 3-waves of the fast-fast-fast resonances (Figure 2).

On the physical side, for the Bu = O(1) regimes discussed in Sections 3 and 5, we establish statistical

dephasing e�ects induced by turbulent processes on inertio-gravity waves with 3DQG turbulence acting to

renormalize both frequency and viscosity of the waves. We generalize the work of Legras (1980), Carnevale

and Martin (1982). In particular, we calculate Doppler phase corrections associated with the fact that

horizontally averaged buoyancy variable ��1 is an adiabatic invariant. Namely, ��1(x3) has a O(�) variation on

large times when Roa � Fh � �. Rigorous mathematical analysis based on small divisor estimates shows that

3 waves fast-fast-fast resonances are rare in the Bu = O(1) atmospheric regimes (BMN, 1996b and Section

6) as well as in Bu << 1 regimes (BMN, 1996a). In fact, just switching on even weak rotation destroys

the 3-waves resonances found in the pure strati�ed case f = 0. One of the hardest parts of our analysis is

to estimate the total probabilities of quasi-resonances, that is the width of Arnold tongues coming out of

points (set of measure zero) where 3 wave resonances are possible (see Figure 2). These resonances are not

neglected but rather weights are assigned to them according to their importance (BMN, 1996d and Section

6). Even 3 waves resonances do not alter the global picture: they correspond to higher order corrections

(\Arnold drift").

The width of Arnold tongues scales algebraically with Roa (see Corollary 6.1 and Figure 2). For synoptic

scales at midlatitudes, L � 2000 km, H � 10 km, the width (normalized probability of a 3 wave resonance)

is of order (H=L)2 = (5� 10�3)2 and it is of order (10�2)2 at mesoscales (L � 100 km); 3 wave interactions

become signi�cant only for tall columns (see Section 6). In regions free of fast-fast-fast interactions (set of

full Lebesgue measure) nonlinear geostrophic adjustment takes place via \catalytic" interactions between one

QG mode and two AG modes con�rming the insight and numerical simulations of Bartello (1995). Bartello

(1995) also discusses fast-slow-slow interactions, which are non-resonant. In our work, they appear at the

next order in Roa or 1=N at Bu = O(1), and contribute to the feedback of the ageostrophic �eld onto

the QG one (ABMN, 1996). Inside Arnold tongues where fast-fast-fast 3 wave interactions are possible we

expect Arnold drifts associated with neglected higher order resonances. Guided by KAM theory in �nite

dimensional systems and the fact that Arnold tongues are very narrow in our problem (Section 6), we expect

that these drifts will be slowly evolving (cf. Figure 2). Thus we expect the dynamical picture to be intact even

inside Arnold tongues where 3 wave interactions are possible. Our analysis (Section 6) proves that 3 wave
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interactions will not contaminate large scale dynamics. Breakdowns can occur only locally corresponding to

small horizontal scales. In this case a local anisotropic Rossby number based on local horizontal scale will

become large and both local breakdown and collapse leading to fully 3D dynamics (locally) will be possible.

We have analyzed such 3D instabilities in an idealized case of rotating columnar 
ows (Mahalov, 1993). Here

our rigorous mathematical analysis amounts to the following: the probability of such a localized breakdown

to 3D turbulence to extend to larger scales via a catastrophic inverse cascade is very small. This is indeed

what is observed in the atmosphere, where near balanced dynamics are sustained for all times in the larger

scales. The regime Fr ! 0, Roa = O(1), Bu ! 1 requires a special attention. In this regime 3DQG

equations degenerate to quasi-2D equations lacking control of vertical shearing and leading to unbalanced

dynamics at the lowest order. To this end, a regularization based on weak rotation is proposed in Section 4.

In BMN (1996b) we established splitting between 3DQG and reduced ageostrophic �eld; here we show

that the structure of reduced ageostrophic equations (via Craya-Herring cyclic basis) implies upscale (inverse)

energy transfer of rotational (vortical) energy via QG mode versus downscale cascade of wave energy via

slow-fast-fast resonant catalytic interactions (following Bartello, 1995 notations). In cases Bu = O(1) and

Bu >> 1, AG �eld satis�es uncoupled families of equations on 4 rays in Fourier space. As the e�ects of

strati�cation are increased direct cascade of AG energy (along these rays) toward small scales is enhanced.

In Section 5 we introduce the anisotropic phase coherence tensor and model anisotropy in Bu = O(1) regimes

of geophysical turbulence. There is a spectral gap (i.e. a power law scaling break) between QG and AG

spectrum with AG spectrum being shallower than the typical k�3 QG spectrum; it varies smoothly between

k�2 and k�5=3 which is in agreement with numerical simulations of M�etais et al. (1996), Bartello et al.

(1996).

A possible emerging picture of Burger O(1) turbulence is that 3DQG turbulence being a guiding center is

corrupted by phase turbulence and Doppler phase shifts; with the dynamics of the AG �eld being constrained

to a uncoupled 4-rays families, with direct AG cascade restricted to the latter. The feedback of AG �eld on

QG dynamics can be computed at next order in Fr or Roa (ABMN, 1996).

On the mathematical side, the challenge is to prove that dynamics of limit equations uniformly closely

approximate geophysical turbulence in regimes:

1. N = O(1), 
 >> 1 (rotation dominated regime), Fr = 1=N .

2. N >> 1, 
 >> 1, Bu = O(1) (strongly rotating/strati�ed Burger number of order one regime).

One needs uniform error estimates in Froude and Rossby numbers. It is important to realize that \weak"

convergence results, \�ltered" and o(1) error estimates cannot achieve this. In BMN (1996 a,b,d) and here

(Section 6) we obtain strong convergence results with uniform error estimates on sets of full Lebesgue measure

with initial data being in the Sobolev space H7 (and even H4) for both Bu = O(1) and rotation dominated
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regimes. This is in contrast with the work of Embid and Majda (1996) where only local existence results are

established. Following general theorems of Schochet (1994), they state a pointwise convergence theorem with

o(1) error on a time interval [0; T ]; since they include (for Bu = O(1)) 3-wave resonances they cannot give

any uniform error estimates in the parameters. Our theory handles rigorously 3-waves resonances, but goes

much deeper into the structure of quasi 3-wave resonances and their contributions. Moreover, the interval

[0; T ] in Embid and Majda (1996) is small where T can be as bad as any local time of existence of original

3D Euler/Boussinesq equations, and it is in fact limited by potential 3D vortex singularities of the full 3D

Euler. Embid and Majda (1996) miss the regularizing e�ects of strong rotation and strati�cation. As Roa

and Fh ! 0, Bu = O(1) we prove that T ! +1 for (1.1)-(1.2). We agree with them only as to the QG

operator decoupling, which we obtained independently in BMN (1996b) for Boussinesq equations.

Now we describe the structure of reduced equations which will be derived in Section 3 for Bu = O(1).

In the reduced equations the total velocity splits into the quasi-geostrophic �eld wQG(t) satisfying 3DQG

(quasi-geostrophic) equations

@twQG = B1(wQG;wQG); (1.8)

and the ageostrophic component satisfying in principle general equations of the type:

@twAG = B2(wQG;wAG) +B3(wAG;wAG): (1.9)

In the case when the balanced QG dynamics are absent, wQG(t) = 0, Eqs. (1.9) reduce to equations describing

wave turbulence (e.g. Zakharov et al., 1992):

@twAG = B3(wAG;wAG): (1.10)

We prove that (1.9) holds only within very narrow Arnold tongues (Figure 2) with in�nitesimal probability

(Section 6); we do not just drop B3 with some ad-hoc scaling argument. In the real atmosphere situation a

near balance state is sustained and the quasi-geostrophic (balanced) �eld is present and it is dominant. In

Babin, Mahalov and Nicolaenko (1996b) and here (Section 6) it is shown using small divisor estimates that

for almost all Bu and a3 = H=L only \catalytic" interactions rule AG dynamics:

@twAG = B2(wQG;wAG) (1.11)

where wQG(t) is a solution of 3DQG equations. Such interactions do not in
uence the slow QG modes, but

act to transfer fast AG energy downscale (Bartello, 1995). Further, for all Bu, all a3 and almost all domain

aspect ratios a2, B2(wQG;wAG) splits in Fourier space into uncoupled, restricted interaction operators on 4
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rays families 0
BBB@

m1

m2

m3

1
CCCA = �

0
BBB@

�1 0 0

0 �1 0

0 0 �1

1
CCCA
0
BBB@

n1

n2

n3

1
CCCA : (1.12)

In Eqs. (1.11) direct cascades of energy are allowed for wAG through B2(wQG;wAG). Wave energy cascades

toward smaller scales and is subject to strong dissipation in AG mode, via the anisotropic viscosity �AG

in (1.7).

An important observation on the nature of interactions in Eqs. (1.11) and their impact on AG dynamics

(AG cascades/frozen AG turbulence) is now in order. The nature of interactions in Eqs. (1.11) is funda-

mentally di�erent in rotation dominated and strati�cation dominated regimes. In the rotation dominated

case (see Fig. 1) corresponding to Roa ! 0, Bu ! 0, and Fr �nite interactions in Eqs. (1.11) for n-

th, n = (n1; n2; n3) Fourier mode are restricted to wavenumbers �m = (m1; �m2; �m3) satisfying m3 = �n3,
j �m0j = j�n0j, k +m = n (BMN, 1996a). Thus, modes m which interact with a given mode n lie on the same

energy shell as n. Interactions in (1.11) are localized in Fourier space and do not extend to zero or in�nity.

This special nature of interactions in the rotation dominated regime implies freezing of energy cascades in

x3 in Eqs. (1.11). Similar freezing of energy cascades of AG �eld (frozen AG turbulence) was proven for

rapidly rotating shallow-water equations in Mahalov and Marcus (1995), BMN (1996c). In particular, it was

shown that in the case of rapidly rotating shallow-water equations interactions in �n0 = (n1; �n2) AG equation

are restricted to wavenumbers �m0 = (m1; �m2) satisfying j �m0j = j�n0j, k0 +m0 = n0.

The nature of interactions in (1.11) drastically changes when strati�cation is increased (see Figure 1). As

shown in this paper, in the Bu = O(1) as well as Bu >> 1 regimes interactions for the n-th mode in (1.11)

are restricted to four rays families given by (1.12) for almost all a2. Thus, interacting modes lie on families

of four rays connecting 0 and in�nity in Fourier space. AG energy cascades are now possible along these

rays from small wavenumbers (large scales) to large wavenumbers (small scales).

Vertical shearing operations in B2(wQG;wAG) are conveniently expressed in terms of divergent velocity

potential �. We recall that � and  are related to a horizontal velocity �eld Uh by the formula Uh =

e3 �rh +rh�. The operator B2(wQG;wAG) takes an especially simple form in the Craya-Herring cyclic

basis. In this basis the �rst component of wAG is simply the divergent velocity potential � = (��h)
�1 @U3AG

@x3

or in Fourier space

�n = �i �n3j�nj
1

j�n0jw
1
n (1.13)

where �n0 = (n1; n2=a2), and the components of the full �eld in the Craya-Herring basis are (w0
n; w

1
n; w

2
n).

Here w0
n is the component of the quasi-geostrophic mode and w1

n, w
2
n are the ageostrophic components. The
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important role of � in our AG operator B2 ties with the more classical theory of balanced models (Gent and

McWilliams, 1983a and 1983b) and the �ndings of Farge and Sadourny (1989), Farge (1988) on e�ects of

inertio-gravity waves and rotation on two-dimensional turbulence.

The second component w2 of wAG in the Craya-Herring basis is related in a simple way to the vertical

motion or omega equation. We recall that the vertical velocity does not appear in 3DQG equations and the

whole purpose of manipulations leading to the omega equation is to obtain a diagnostic equation from which

vertical velocity component can be calculated (e.g. Holton, 1992; Gent and McWilliams, 1983a). We brie
y

recall these calculations starting from Eqs. (1.1)-(1.2) written in the form (f0 = 2
0)

@tU+ f0e3 �U� �1 e3 = �rp�U � rU; r �U = 0; (1.14)

@t�1 + N2
0U

3 = �U � r�1: (1.15)

First, we apply the operator f0
@
@x3

curl to Eq. (1.14) and obtain a scalar equation by projecting the result on

e3. Then we apply horizontal Laplacian to Eq. (1.15). Recalling that curl(e3 �U) � e3 = �@U3

@x3
, we obtain

by subtraction

@t(�r2
h�1 + f0

@

@x3
!3) � (N2

0r2
h + f20

@2

@x23
)U3 = G (1.16)

where G denote nonlinear terms; !3 = curlU � e3 is vertical component of the vorticity vector. The omega

equation is obtained by dropping @t(�r2
h�1+f0

@
@x3

!3) in Eqs. (1.16). Then we obtain a diagnostic equation

which is used to determine vertical velocity U3:

�(N2
0r2

h + f20
@2

@x23
)U3 = G: (1.17)

Up to a normalization constant, second mode in the Craya-Herring basis is precisely the geostrophic departure

�r2
h(buoyancy)+f0

@
@x3

(vertical vorticity). It characterizes unbalance in Eqs. (1.16)-(1.17). The geostrophic

departure has the form j�n0j2�1;n � f0n3(�n�U
y
n) � e3= N0j�n0j2�n � f0n3(�n�U

y
n) � e3 in Fourier space. Since

N0j�n0j2�n�f0n3(�n�Uy
n) �e3= !nj�njj�n0j Uy

n �q2n, the geostrophic departure up to a normalization is precisely

the mode q2 in the Craya-Herring cyclic basis (see Eqs. (2.9)).

This paper is organized as follows. In Sec. 2 we recast the Boussinesq equations in the Craya-Herring

cyclic basis. This intrinsic coordinate system is particularly convenient for investigations of adiabatic con-

servation laws and global decoupling. Next in Sec. 3, we develop a methodology and procedure for studying

rotating Boussinesq equations in the strongly strati�ed limit. Here, the dynamical decoupling between the

vortical and inertial-gravity wave components of the total �eld is achieved. It is shown that horizontally

averaged buoyancy variable is an adiabatic invariant in the asymptotic state and phase corrections to buoy-

ancy time scale which are associated with vertical shear of the horizontally averaged buoyancy are obtained.
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In Section 4 we analyze an intermediate asymptotic regime of strong strati�cation and weak rotation with

e�ective saturation of vertical shearing of pancakes by weak rotation (no vertical viscosity needed). The

energy spectrum and spectral eddy viscosity models are deduced in Section 5. Finally, in Section 6 we

describe the uniform convergence results and the regularization of Euler-Boussinesq equations, as Fh ! 0,

Roa ! 0, Bu = O(1). These results require much less di�erentiability than in BMN (1996a): now only four

derivatives on initial data are required for the most general convergence results on arbitrary long times.

2 Boussinesq equations in the Craya-Herring cyclic basis

We introduce a change of variables �1 = N� (M�etais and Herring 1989) and combine velocity and buoyancy

variable in one variable Uy = (U; �) after which Eqs. (1.1)-(1.2) written in non-dimensional variables take

more symmetric form:

@tU
y +U � rUy + fRUy = �ryp �NSUy; r �U = 0 (2.1)

where ryp = (rp; 0) and time was non-dimensionalized using turbulence time scale L=Uh. Here

R =

0
@ J 0

0 0

1
A ; S =

0
@ 0 0

0 J

1
A ; J =

0
@ 0 �1

1 0

1
A ; (2.2)

and Rn, Sn will denote the action of R and S on n-th Fourier component, M = fR + NS. In this section

we write Boussinesq equations in the Craya-Herring cyclic basis and use this representation to perform time

averaging. Linear equations describing inertio-gravity waves are

@tU
y +MUy = �ryp; r �U = 0: (2.3)

Dispersion relation for inertio-gravity waves which are solutions of Eqs. (2.3) has the form

!2n = N2 j�n0j2
j�nj2 + f2

n23=a
2
3

j�nj2 = Ro�2a (Bu
j�n0j2
j�nj2 +

n23
j�nj2 ) = N2(

j�n0j2
j�nj2 + Bu�1

n23
j�nj2 ) (2.4)

where j�nj2 = n21 + n22=a
2
2+ n23=a

2
3, j�n0j2 = n21 + n22=a

2
2. Here Roa is the anisotropic Rossby number and Bu is

the Burger number de�ned by (1.4), (1.5). It follows from (2.4) that the e�ect of rotation and strati�cation

are not uniform on scales. In the case j�n0j=jn3j >> 1 gravity waves are fast and inertial waves are slow.

On the other hand, for scales satisfying jn3j=j�n0j << 1 gravity waves are slow and inertial waves are fast.

Control of resonances coupling fast waves on small scales and fast waves on large scales can only be achieved

through a careful analysis of small divisors in resonances (BMN, 1996 a, b, d and Section 6).

The inertio-gravity wave propagator is the operator solution E(t) (E(0) = Id is the identity) to the linear

problem (2.3):

�(t) = E(t)�0; �(0) = �0 (2.5)
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where �(t) = (U(t); �(t)). The operator E(t) describes propagation of inertio-gravity waves. In the Craya-

Herring cyclic basis (Riley et al. (1981), M�etais and Herring (1989), Godeferd and Cambon (1994) present

developments in this basis for strati�ed 
ows without rotation) linear problem (2.3) restricted on the subspace

of divergence free vector �elds reduces to the following 3� 3 matrix for the n-th Fourier component:

!nM
0 = !n

0
BBB@

0 0 0

0 0 �1
0 1 0

1
CCCA (2.6)

where zero eigenvalue corresponds to the quasi-geostrophic mode. We use the extended notation

�m = [m1; m2=a2; m3=a3; 0 ]; 0 < a2 � 1;

and similarly for n; k. We introduce the orthonormal basis of the divergence-free subspace for n-th Fourier

mode:

p0n =

�
� �n2
j�n0j ;

n1

j�n0j ; 0; 0
�
; p1n =

�
n1 �n3
j�nj j�n0j ;

�n2 �n3
j�nj j�n0j ;

�n21 � �n22
j�nj j�n0j ; 0

�
; p2n = e4 = [ 0; 0; 0; 1 ]: (2.7)

The vectors p0k; p0m; p1k etc. are de�ned similarly. The vectors p0k; p1k; p2k are orthonormal cyclic

vectors for the matrix S restricted on the divergence free Fourier subspace; let Pd be the projection on

divergence free vectors in the Helmholtz decomposition (for the velocity component):

PdSnp0n = 0; PdSnp1n = ��np2n; PdSnp2n = �np1n; �n =
j�n0j
j�nj : (2.8)

The pjn are the Craya-Herring basis for the purely strati�ed problem, already used by Riley et al. (1981).

In the case f 6= 0 we use the following orthonormal basis

q0n =
1

!n
(N�np0n + f�np2n); q1n = p1n; q2n =

1

!n
(N�np2n � f�np0n) (2.9)

where

�n =
�n3
j�nj ; !

2
n = N2�2n + f2�2n: (2.10)

The vectors q0n, q1n and q2n are orthonormal and form a basis in the space of divergence free vector �elds.

In the case n1 = n2 = 0 (this case corresponds to taking horizontal averages) we have from (2.9) (we have

used the fact that p1njn1=n2=0 = ( 1p
2
; 1p

2
; 0; 0))

q0�n = (0; 0; 0; 1); q1�n = (
1p
2
;
1p
2
; 0; 0); q2�n = (

1p
2
;� 1p

2
; 0; 0) (2.11)

where �n = (0; 0; n3) denotes wavenumbers for which n1 = n2 = 0. In this paper we use the overbar notation

for the operation of horizontal averaging

�F (t; x3) =
1

2�2�=a2

Z 2�

0

Z 2�=a2

0

F (t; x1; x2; x3)dx1dx2: (2.12)
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For the matrix of linear problem

Mn = NSn + fRn (2.13)

the vectors (2.9) form a cyclic basis since, after projection on divergence-free vector �elds via Helmholtz

decomposition:

PdMq0n = 0; PdMq1n = �!nq2n; PdMq2n = !nq1n; (2.14)

and, as !2n = f2 for n1 = n2 = 0

PdMq0�n = 0; PdMq1�n = �fq2�n; PdMq2�n = fq1�n: (2.15)

Any arbitrary divergence-free vector �eld Uy
n can be written as

U
y
n = V 0

n q0n + V 1
n q1n + V 2

n q2n: (2.16)

We shall use the variables V to denote vector of coe�cients corresponding to Uy
n: Vn = [V 0

n ; V
1
n ; V

2
n ] =

[V 0
n ;V

0
n], V

0
n = [V 1

n ; V
2
n ]. We denote by �QG

n the projection onto q0n (quasi-geostrophic mode):

�QGUy(x) =
X
n

V 0
n q0ne

in�x; �QG
n Uy

n = V 0
n q0n:

Similarly, we de�ne the projection �AG onto ageostrophic component:

�AGUy(x) =
X
n

(V 1
n q1n + V 2

n q2n)e
in�x; �AG

n Uy
n = V 1

n q1n + V 2
n q2n:

The action of the linear propagator on the Fourier components E(t) can be written in V -variables

E(t)[V 0;V0]n = exp(!ntM
0
n)[V

0;V0]n = [V 0; exp(!ntJ)V
0]: (2.17)

Here J, M0
n are given by

M0
n =

0
BBB@

0 0 0

0 0 �1
0 1 0

1
CCCA ; J =

0
@ 0 �1

1 0

1
A ; (2.18)

We have

exp(!nJt) = cos(!nt)I+ sin(!nt)J: (2.19)

Obviously, E(t) represents vector rotation in V 1; V 2-plane; V 0 component (called 3DQG) is not a�ected.

Note that the relation between U and V variables is given by

V 0
n = Uy

n � q0n; V 1
n = Uy

n � q1n; V 2
n = Uy

n � q2n: (2.20)

15



Clearly, V 0
n

�
= �V 0

�n for real U(x).

The Boussinesq equations (2.1) in Fourier representation in V variables can be written in the cyclic

basis (2.9) as

@tV
i3
n = �i

X
k+m=n;i1;i2

Qi1i2i3
kmn V

i1
k V i2

m � !n(M
0
nVn)

i3 (2.21)

where i1; i2; i3 = 0; 1; 2, M 0 is the matrix M in V -variables given by (2.18). The coe�cients Qi1i2i3
kmn are

determined from the equations

Qi1i2i3
kmn = (qi1k �m)(qi2m � qi3n): (2.22)

The coe�cients Qi1i2i3
kmn ; k+m = n; are explicitly given by a straightforward computation using (2.9), (2.22).

For the coe�cient describing interaction of 0-modes (quasi-geostrophic) we obtain (n0^m0 � n1m2�n2m1).

Q000
kmn =

N �n0 ^ �m0

!k!m!nj�kjj �mjj�nj
(N2 �n0 � �m0 + f2 �n3 �m3): (2.23)

Since skew-symmetric in k;m component of Q000
kmn makes no contribution to Eq. (2.21), we can use the

following Q000
kmn in Eq. (2.21):

Q000
kmn =

N �k0 ^ �m0

!k!m!nj�kjj�mjj�nj
(N2 j �m0j2 + f2 �m2

3) =
N!mj �mj �k0 ^ �m0

!k!nj�kjj�nj
(2.24)

where we have used j �mj2!2m = N2j �m0j2 + f2 �m2
3. The coe�cients Q000

kmn given by (2.24) is the familiar

coe�cient in 3DQG equations written in cyclic basis. Other coe�cients in (2.21) have the form

Q012
kmn = �fN�m�n(

�k0 ^ �m0)2

!k!nj�kjj �m0jj�n0j ; Q102
mkn = �fN ( �m3

�k0 � �m0 � �k3j �m0j2)(�n3�n0 � �k0 � �k3j�n0j2)
!k!nj�kjj�mjj�njj �m0jj�n0j (2.25)

Q021
kmn =

fN�m�n(�k0 ^ �m0)2

!k!mj�kjj �m0jj�n0j ; Q201
mkn =

fN�m�n(�k0 ^ �m0)2

!k!mj�kjj �m0jj�n0j (2.26)

Q011
kmn =

N (�k0 ^ �m0)(�n3 �m3�n
0 � �m0 + j�n0j2j �m0j2)

!kj �m0jj�n0jj�kjj �mjj�nj ; Q101
mkn =

N�n(�k
0 ^ �m0)( �m3

�k0 � �m0 � �k3j �m0j2)
!kj�kjj �mjj �m0jj�n0j ; (2.27)

Q022
kmn =

N (�k0 ^ �m0)(N2j �m0j2j�n0j2 + f2 �m3�n3 �m0 � �n0)
!k!m!nj�kjj �mjj�njj �m0jj�n0j

; Q202
mkn =

f2N �m3(�k0 ^ �m0)(�k3j�n0j2 � �n3�n0 � �k0)
!k!m!nj�kjj �mjj�njj �m0jj�n0j

: (2.28)

In addition, we have coe�cients associated with the operation of horizontal averaging, where �k = (0; 0; k3):

Q000
�kmn = Q000

k �mn = Q000
km�n = 0;Q012

�kmn = Q021
�kmn = Q011

�kmn = Q022
�kmn

= 0: (2.29)
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Also, Qi1i20
�k �mn

= 0 (i1 6= 0; i2 6= 0) and

Q102
m�kn = �N�m�n

!n
�k3; Q

201
m�kn = Q101

m�kn = Q202
m�kn = 0: (2.30)

We note that V i1
k V i2

m = V i2
m V i1

k and then collecting terms in Eqs. (2.21) we de�ne the symmetrized

Q̂011
kmn = Q011

kmn +Q101
mkn; Q̂

012
kmn = Q012

kmn +Q102
mkn; Q̂

021
kmn = Q021

kmn +Q201
mkn; Q̂

022
kmn = Q022

kmn +Q202
mkn: (2.31)

It implies that

Q̂021
�kmn = Q̂011

�kmn = Q̂022
�kmn = 0; Q̂012

�kmn = �N�m�n
!n

�k3: (2.32)

3 The limit equations describing reduced dynamics

We write classical rotating Boussinesq equations using the variables V in the basis (2.9); these equations

have the form (see Eqs. (2.21))

@tVn + !nM
0

nVn = (B(V;V))n: (3.1)

Here M0 is the linear propagator operator corresponding to inertio-gravity waves given in cyclic V -variables

by Eqs. (2.17)-(2.18). We introduce this linear propagator directly into nonlinearity in (3.1) using the

change of variables V = E(�t)v, Vn = exp(�!nM0
nt)vn where v = [v0; v1; v2] and M0 is de�ned by (2.18).

Boussinesq equations (3.1) written in v variables have the form

@tv = B(t;v;v); B(t;v;v) = E(t)B(E(�t)v;E(�t)v): (3.2)

Equations (3.2) are explicitly time-dependent with rapidly varying coe�cients. The following equations

describing reduced dynamics are associated with Eqs. (3.2) (BMN, 1996b):

@tw = ~B(w;w); ~B(w(t);w(t)) = limT!+1
1

T

Z T

0

B(s;w(t);w(t))ds: (3.3)

Clearly, when represented in Fourier modes, the right-hand-side of (3.3) will be determined by resonances

�!k�!m�!n = 0 within terms of the type exp(i(�!k�!m�!n)s), see (2.17), (2.19). Projecting Eqs. (3.3)
on the 3DQG mode q0n corresponding to the zero eigenvalue of the linear problem, we �nd that the limit

equations (3.3) describing reduced dynamics contain classical 3DQG equations as a completely decoupled

subsystem, a result already published in BMN (1996b). This con�rms the QG decoupling of the reduced

equations after their projection on the mode corresponding to the zero eigenvalue which was also proven for

the rotating shallow-water equations and 3D rotating Euler equations (Mahalov and Marcus, 1995; BMN,

1995; BMN, 1996a; BMN, 1996b). In the case of 3D rotating Euler the reduced equations were projected
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on the subspace of 2D-3C �elds by means of the operation of vertical averaging. Two-dimensional, three

components refer to �elds that have three components and depend on two variables. These are MFI (material

frame indi�erent �elds) une�ected by rotation (Ristorcelli et al., 1995; Speziale, 1989). In the case of rotating

shallow-water equations reduced equations were projected on the quasi-geostrophic mode and decoupling of

quasi-geostrophic equations was obtained and published in Mahalov and Marcus (1995) before Embid and

Majda (1996). In the important paper by Warn (1986) the same result for shallow-water equations had

been obtained based on formal two time scales expansions and Ertel's theorem. To prove the decoupling for

Boussinesq equations, Embid and Majda (1996) also used Ertel's theorem, which does not give insight into

the structure of the ageostrophic dynamics in the context of Boussinesq equations.

Now we ouline a new proof of decoupling of 3DQG equations in (3.3) We refer to BMN (1996a,b,c) and

Mahalov and Marcus (1995) for detailed proofs of splitting in Boussinesq, 3D Euler and rotating shallow-

water equations. By (3.2) and (3.3) the only active triadic interactions in the reduced equations (3.3) are

those satisfying the relation �!k � !m � !n = 0. We note that projection of Eqs. (3.3) on QG mode

(which corresponds to zero eigenvalue of the linear problem) leads to the additional constraint !n = 0. Then

the conditions �!k � !m � !n = 0 and !n = 0 reduce to 2-wave interactions !k = !m. For N2 6= f2 the

condition !k = !m is equivalent to the condition j�k0j=j�kj = j �m0j=j �mj (equivalently, �k = �m; see (2.8)).

Clearly, reduced equations (3.3) projected on QG mode involve only the coe�cients Qi1i2i3
kmn with i3 = 0

(n = k+m). One trivial solution of !k = !m is !k = !m = 0 which corresponds to the QG coe�cient Q000
kmn.

An important observation is that other terms involving the coe�cients Qi1i20
kmn (i1 6= 0 or i2 6= 0) in Eqs. (3.3)

are annihilated when the resonance condition �k = �m is used. For the Boussinesq case, the detailed proof

can be found in BMN (1996b).

Thus, in the reduced equations (3.3) the total velocity splits into the limit quasi-geostrophic �eld

~U
y
(t; x1; x2; x3) satisfying (3.12) and ageostrophic component satisfying equations of the type:

@twAG = B2( ~U
y
(t);wAG) +B3(wAG;wAG): (3.4)

In this paper we are interested in the situation when the quasi-geostrophic (balanced) �eld is present and

it is dominant. We explore the implications of the existence of the vortical mode (at mesoscales the vortical

mode represents quasi-geostrophic 
ows) on the dynamics. The major shortcoming of many existing theories

is that they neglect the interaction with the vortical (=potential vorticity carrying) mode of motion (M�uller

et al., 1986). The results of the study by Lelong and Riley (1991) provide further evidence that the role

of the vortical mode in in
uencing the evolution of strongly strati�ed 
ows may be signi�cant and should

not be neglected. According to M�uller et al. (1986), interactions among internal waves and vortical modes

loom as one of the important questions to be addressed by a strong interaction theory. In BMN (1996 a-e)
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and here we present such strong interaction theory based on rigorous KAM type mathematical analysis and

small divisor estimates.

In BMN (1996b) and in Section 6 it is shown that the main contribution to resonances in the reduced

equations (3.4) is given by the termB2( ~U
y
(t);wAG). We arrive at the same conclusion empirically comparing

orders of magnitude of the term B2( ~U
y
(t);wAG) and B3(wAG;wAG):

jB3(wAG;wAG)j
jB2( ~U

y
(t);wAG)j

� jwAGj
j ~Uyj

� 0:1 (3.5)

for synoptic scales at midlatitudes (e.g. Holton, 1992). Then equations become linear inwAG with coe�cients

depending on arbitrary quasi-geostrophic �eld ~U
y
(t):

@twAG = B2( ~U
y
(t);wAG): (3.6)

The numerical work of Bartello (1996) also shows that resonant 3-wave interactions are of secondary impor-

tance in the overall picture of interactions when both rotation and strati�cation are present and Bu = O(1).

They do not lead to slow-fast energy exchange and are di�cult to resonate. Rigorous proof of this result was

given in Babin, Mahalov and Nicolaenko (1996b) using small divisor estimates and is discussed in Section 6.

Geostrophic adjustment takes place via catalytic interaction involving a \rotational" (\vortical") mode and

two inertial-gravity modes. As in Bartello (1995), an interaction is \catalytic" in that it does not in
uence

slow modes, but serves to transfer fast AG energy downscale.

The bilinear form ~B(w;w) in Eqs. (3.3) can be conveniently represented in the cyclic basis (2.9). Now

we write the resonant (limit) equation for w = w0q0 + w1q1 + w2q2 where w0 is simply projection of w

on QG mode. Then w0 can be de�ned from the quasi-geostrophic equation; w0 = (w1; w2) is found from

inertio-gravity wave limit equation. The quasi-geostrophic equation is given by

@tw
0
n = B1(w

0; w0)n; B1(w
0; w0)n = �i

X
k+m=n

Q000
kmnw

0
kw

0
m; Q

000
kmn =

N!mj �mj �k0 ^ �m0

!k!nj�kjj�nj
(3.7)

and in the case n1 = n2 = 0

B1(w
0; w0)�n = �i

X
k+m=n

Q000
km�nw

0
kw

0
m = 0 (3.8)

since Q000
km�n = 0 by (2.29). From (2.29), we also prove that �� and the horizontal averages of velocities do not

enter the QG equation (3.7); that there are no w0
�k
or w0

�m. This is not true for the operator splitting in the

limit f = 0, Fh << 1, Bu >> 1.

We introduce variables ~q, ~U (quasi-geostrophic potential and velocity, not to be confused with the cyclic

basis vectors q0n, q1n and q2n):

~qm = !mj �mjw0
m;

~Uk = N [�k2=a2; k1; 0; 0]~qk=!2kj�kj2: (3.9)
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The quasi-geostrophic stream function is de�ned by ~ k = ~qkN=!
2
kj�kj2. Recalling that !2kj�kj2=N = j�k0j2+�2�k23,

� = f=N we �nd a familiar formula which relates ~ and ~q in physical space

�(r2
h + �2

@2

@x23
) ~ = ~q: (3.10)

Using (3.9), Eq. (3.7) is written in the form:

@t~qn = �i
X

k+m=n

( ~Uk �m)~qm: (3.11)

~q(t; x) obeys in physical space the 3D quasi-geostrophic equations (Bourgeois and Beale, 1994)

~D
~Dt

~q = 0 (3.12)

where
~D
~Dt

is the advective derivative, based on the quasi-geostrophic velocity and ~q is the quasi-geostrophic

potential.

Now we describe adiabatic invariants associated with horizontal averaging. Let us denote �n as (0; 0; n3).

We note that in the case n1 = n2 = 0 we have q0�n = [0; 0; 0; 1] and, therefore, w0
�n = ��n. Now the fact that

Qi1i20
km�n = 0 implies @

@t
��n = 0. Then horizontal averages of � are conserved by the reduced equations. We

outline the proof of this important new result, that is @
@t
��n = 0. First notice that Q000

km�n = 0 from (2.23).

Also, Q110
km�n = Q220

km�n = Q210
km�n = 0. Then ��n, the n-th Fourier coe�cient of ��(t; x3) satis�es:

@

@t
��n =

X
k+m=n;n0=0

Q120
km�n(w

1
kw

2
m � w2

kw
1
m); (3.13)

the right hand side is null on 2-wave interactions �k = �m with n0 = 0. Clearly, in (3.13) no 3 wave

resonances are omitted. This result holds for all resonances. The proof is very closely related to the one for

exact QG splitting (see discussion before Eq. (3.4)) but does not follow immediately from Ertel's theorem.

This exact conservation law of the reduced equations correspond to adiabatic invariant of the full Boussinesq

equations. In particular, it shows that in the asymptotic state (after several periods of oscillations associated

with wave motions) horizontally averaged buoyancy variable will reach a constant in time value. It con�rms

that horizontal spatial averages of buoyancy variable ��(x3) are time independent in the asymptotic state;

this is frequently done in many investigations addressing the impact of vertical variability of buoyancy on the

dynamics (e.g. Howard, 1972; McWilliams and Weiss, 1996; Doering and Constantin, 1996). Below we �nd

the impact of buoyancy phases associated with vertical shearing of this invariant on ageostrophic dynamics

in non-hydrostatic situation. Similarly, we prove that �U1, �U2 undergo rigid 
-rotation in the Bu = O(1)

limit (this result is true for all resonances including 3 wave resonances) and they are true adiabatic invariants

only if 
 = 0.
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The limit equations for w0
n = [w1

n; w
2
n] include w

1
m, w

2
m and already found w0

k. Therefore, taking into

account k;m -symmetry, we always label w0 variable by k; therefore to write the resonant equations it su�ces

to consider Q̂011
kmn; Q̂

012
kmn; Q̂

021
kmn; Q̂

022
kmn (recall that all 1-wave and 3-wave interactions are non-resonant, cf.

Section 6). The resonant relations reduce to !n = !m; n = k + m for the \symmetrized" Q̂i1i2i3
kmn de�ned

in (2.31). The original Boussinesq equations for v0 = �AGv can be written in the form

@tv
0
n = �i exp(!ntJ)

X
k +m = n

v0kQ̂kmn exp(�!mtJ)v0m +�AG
n Q̂

+
(Nt;v)n: (3.14)

Here the matrix Q̂kmn is de�ned by

Q̂kmn =

0
@ Q̂011

kmn Q̂021
kmn

Q̂012
kmn Q̂022

kmn

1
A ; (3.15)

Q̂011
kmn etc. are given above in (2.31)-(2.32), J is given by (2.18); Q̂

+
(Nt;v)n are non-resonant terms. Taking

into account (2.19), we see that resonant interactions are generated by squares of sines and cosines and are

given by the matrix ~Q = (Q̂� JQ̂J)=2, namely:

~Qkmn =

0
@ Q̂011

kmn + Q̂022
kmn; �Q̂012

kmn + Q̂021
kmn

�Q̂021
kmn + Q̂012

kmn; Q̂011
kmn + Q̂022

kmn

1
A : (3.16)

Computing explicitly resonant terms in (3.14) we obtain reduced resonant equations for the limit w, with

w0
n = (w1

n; w
2
n)

@tw
0

n = i
X

!m = !n

k +m = n; k0 = 0

N�m�n

!n
�k3��k Jw

0

m � i
X

!m = !n

k +m = n; k0 6= 0

w0
k(t) ~Qkmnw

0

m: (3.17)

We recall that the resonance condition !m = !n is equivalent to the condition j �m0j
j �mj =

j�n0j
j�nj (or �m = �n) and

jm3j
j �mj = jn3j

j�nj (or j�mj = j�nj, see (2.10)). In Eqs. (3.17) w0(t) is an arbitrary solution of quasi-geostrophic

equation with initial data projected on QG �elds and ~Qkmn are geometric coe�cients given above.

In Eqs. (3.17) N�m�n
!n

�k3��k represents phase correction impact of vertical shearing of ��k on ageostrophic

dynamics. Clearly, ( @
@x3

��)�k = i�k3��k. This phase correction implicit in (3.17) is equivalent to the spectral

Doppler phase shift. It can be calculated explicitly as a solution of the linear problem:

@tw
0

n = i
X

�m = �n

k +m = n; k
0
= 0

N�m�n

!n
�k3��k Jw

0

m (3.18)

In particular, in (3.18) for all a2, a3 the condition �m = �n is equivalent to m3 = �n3, m0 = n0 (for m = n,

��k = 0). It implies that k3 = 2n3, �m�n = �2n in (3.18). With the above remark on the convolution in
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(3.18), Eq. (3.18) reduces to the system coupling (n0; n3) and (n0;�n3):

@tw
0

(n0;�n3) = �i2�n3��(0; 0;�2n3)
N�2n
!n

Jw
0

(n0;�n3) (3.19)

whose fundamental solution involves cos(#nt) and sin(#nt) with the spectral phase #n:

#2n = 4�n23j��(0; 0; 2n3)j2(
N�2n
!n

)2: (3.20)

Then in this particular case solutions of (3.17) have the integrating phase factor

exp(�iN�
2
n

!n
2�n3j�(0;0;2n3)j t): (3.21)

Here 2�n3�(0;0;2n3) is vertical shearing of horizontal spatial average of � which is an adiabatic invariant (time

independent) in the asymptotic limit.

The term containing vertical shearing of ��k in (3.17) is associated with the coe�cient Q̂012
�kmn

given

by (2.32). It involves the vertical shearing operator @=@x3 (multiplication by k3 in Fourier space). In

this respect Eqs. (3.17) should be useful in detailed investigations of vertical mixing in times of high shear.

Doppler e�ects such as shifting the frequency of an internal wave can be measured experimentally through

Eqs. (3.21). We have shown the existence of a statistical dephasing e�ect, induced by turbulent processes on

inertial-gravity waves. Turbulence acts to renormalize both frequency and viscosity of waves (Legras, 1980;

Carnevale and Martin, 1982). Legras (1980) has investigated turbulent phase shifts of Rossby waves coupled

with QG turbulence. Using EDQNM theory and numerical simulations he showed that in the turbulent

domain turbulent frequency shifts can be as large as 30 % of the wave frequency given by linear theory. We

e�ectively generalize this work to the most general interactions of inertio-gravity waves with 3DQG turbu-

lence. In BMN (1996a) we presented formulas for frequency shifts induced by turbulence on inertial waves in

the context of 3D rotating Euler equations. The turbulent shifts for rotating shallow-water equations with

the � term were analyzed in BMN (1996 c, e).

The equations (3.17) for wAG are also invariant under vertical averaging, k3 = m3 = n3 = 0; this follows

from the equivalent condition for two wave resonances, !m = !n implies jm3j=jmj = jn3j=jnj. Denote by

wAG the vertical average of wAG. Careful inspection of the coe�cients Q̂i1i2i3
kmn in (3.16) shows that they all

reduce to zero, except for:

Q̂011
��k ��m��n

= Q̂022
��k ��m��n

=
�k0 ^ �m0

j�kj : (3.22)

Moreover the Craya-Herring basis reduces to q0n = p0n, q1n = (0; 0;�1; 0), q2n = (0; 0; 0; 1). Hence wAG

reduces to the vertical averages of vertical velocity and buoyancy variables. Vertical averaging is usually

denoted as the barotropic component (Bartello, 1995). The above establishes that these quantities are
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purely passively advected by the 2D-2C vertically averaged quasigeostrophic velocities. The linkage with the

dynamical Taylor-Proudman theorem at Bu = 0 is remarkable, as u3 and � are indeed passively advected

by the 2D-2C vertically averaged Euler �elds in that context too. It con�rms that barotropic components

u3 and � of the �eld take no part in the geostrophic adjustment process.

Further, for almost all Bu and domain aspect ratios a2, B2(wQG;wAG) in (3.17) splits in Fourier space

into uncoupled, restricted interaction operators on 4 rays families0
BBB@

m1

m2

m3

1
CCCA = �

0
BBB@

�1 0 0

0 �1 0

0 0 �1

1
CCCA
0
BBB@

n1

n2

n3

1
CCCA ; (3.23)

for n3 6= 0. This is obtained by further reducing resonances !m = !n. In Eqs. (3.17) together with

the condition (3.23) direct cascades of energy are allowed for wAG through B2(wQG;wAG). Wave energy

cascades toward smaller scales and is subject to strong dissipation in AG mode. Vertical shearing operations

in B2(wQG;wAG) are conveniently expressed in terms of divergent velocity potential �. We recall that

� and  are related to Uh by the formula Uh = e3 � rh + rh�. The form B2(wQG;wAG) takes an

especially simple form in the Craya-Herring cyclic basis. In this basis the �rst component of wAG is simply

the divergent velocity potential � = (��)�1h
@U3AG
@x3

or in Fourier space

�n = �i �n3j�nj
1

j�n0jw
1
n (3.24)

where �n0 = (n1; n2=a2), and the components of the full �eld in the Craya-Herring basis are (w0
n; w

1
n; w

2
n).

Here w0
n is the component of the quasi-geostrophic mode and w1

n, w
2
n are the ageostrophic components.

The coe�cients ~Q011
kmn = ~Q011

kmn,
~Q012
kmn,

~Q021
kmn in (3.15)-(3.16) explicitly yield terms �m = �i �m3

j �mj
1

j �m0jw
1
m,

�n = �i �n3j�nj 1
j�n0jw

1
n which re
ect vertical shearing dynamics, and contribute to imbalance dynamics. These

terms come from Q011
kmn, Q

012
kmn, Q

021
kmn, Q

201
mkn, Q

101
mkn given by Eqs. (2.25)-(2.27) and are carried over to the

Q̂011
kmn, Q̂

012
kmn, Q̂

021
kmn in Eqs. (2.31) and in Eqs. (3.15)-(3.16). The important role of the divergent velocity

potential � in the AG reduced Eqs. (3.17) can be compared with that in the classical balanced models (Gent

and McWilliams, 1983a, b). There a classical expansion in small parameters is carried. In some sense, our

QG+AG Eqs. (3.17) describe near balanced and some unbalanced regimes.

Wave energy cascades towards smaller scales along rays in Fourier space and is subject to strong dissipa-

tion in the ageostrophic mode. We have an upscale energy cascade via (0; 0; 0) triads corresponding to 3DQG,

downscale cascade of energy via (0; i2; i3), i2 6= 0, i3 6= 0 triads corresponding to catalytic interactions. Tri-

ads (0; i2; i3), i2 6= 0, i3 6= 0 
ush the gravity wave energy downscale in a nonlinear geostrophic adjustment

process. When simulations are initially balanced, gravity modes act to damp large scale rotational modes

via transfer into intermediate scale gravity modes, and via a subsequent downscale wave cascade involving
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the catalytic interaction. E�ective eddy viscosity on fast modes is larger than that on slow modes con�rming

Bartello et al. (1996). Spectral eddy viscosities for QG and AG �elds with explicit dependence on the rota-

tion/strati�cation parameters are calculated. They correspond to 2-wave resonances on the linear di�usion

operator. Let �1 and �2 be the kinematic viscosity and the heat conductivity, respectively; the ratio �1=�2

is known as the Prandtl number. Then e�ective spectral eddy viscosities �QG and �AG are given by

�QG(n) = �2 + (�1 � �2)
j�n0j2

j�n0j2 + �2�n23
; �AG(n) = �1 + (�2 � �1)

j�n0j2
j�n0j2 + �2�n23

(3.25)

where � = f=N . Let's consider the case of a large Prandtl number �1=�2 >> 1. Then Eqs. (3.25) can be

approximated by the following expressions

�QG(n) = �1
j�n0j2

j�n0j2 + �2�n23
; �AG(n) = �1

�2�n23
j�n0j2 + �2�n23

: (3.26)

Eqs. (3.26) clearly show that QG and AG modes are e�ected by viscosity di�erently. For example, �AG(n)

increases if vertical shearing increases (large n3) while �QG(n) decreases. The dependence of e�ective eddy

viscosities on � = f=N is also of interest. In the strati�cation dominated regime (�! 0) we have �QG(n)!
�1, �AG(n)! 0. The fact that �AG(n)! 0 is re
ected in lack of control of AG dynamics (vertical shearing) in

the strongly strati�ed limit. The situation changes dramatically in the rotation dominated regime �! +1.

In this situation we have �AG(n)! �1, �QG(n)! 0. The fact that �AG(n) approaches a nonzero �nite value

allows us to control AG dynamics in this limit. Remarkably, �QG(n) ! 0 does not spoil the situation since

QG dynamics is globally controlled even for zero viscosity (Bourgeois and Beale, 1994). In the physical case

Pr = �1=�2 6= 1 and naively adding the usual viscosity to 3DQG equations is incorrect in the geophysical

limit.

As noticed by M�etais and Herring (1987) and M�etais et al. (1996), the presence of strati�cation yields

the formation of very strong vertical variability which tends to destroy the vortices vertical coherence. In

stably strati�ed, rotating 
ows, quasi-two-dimensional organized vortices structures are only observed in the

presence of a well-de�ned horizontal density (temperature) front leading to baroclinic instability.

The impact of even small viscosity onto ageostrophic dynamics in (3.17) is strikingly di�erent from that

on the quasi-geostrophic equations (3.12) con�rming the predictions of M�etais and Herring (1989). In (3.12)

modi�ed with �QG dissipative small scales interact nonlinearly with an anisotropic inertial range with inverse

cascades and intermittencies in the quasi-geostrophic turbulence. Inviscid ageostrophic dynamics are driven

by the chaotic quasi-geostrophic �eld, albeit on restricted rays in the Fourier wavenumber space (but no

restriction to the direct energy cascade). Energy is conserved separately on each family, but not enstrophy.

Direct cascade of energy is enhanced along each ray family, in contrast to the inverse cascade for the QG

component spectrum. This is con�rmed by numerical observations of M�etais et al. (1996).
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4 Intermediate asymptotic regime of strong strati�cation and weak

rotation

In this section only k2=a2 will be denoted by k2 and k3=a3 by k3, jkj2 = k21+k
2
2=a

2
2+k

2
3=a

2
3, jk0j2 = k21+k

2
2=a

2
2.

Intermediate asymptotic regime of strong strati�cation and weak rotation is conveniently characterized in the

Craya-Herring cyclic basis using expansions in a small parameter � = f=N = f0=N0. Equations describing

balanced dynamics with control of vertical shearing are obtained by expanding Q000
kmn =

N!mjmj
!kjkj!njnj (k

0 ^m0)

in Eqs. (2.24) in powers of �. We have

!kjkj =
q
N2jk0j2 + f2k23 = N

q
jk0j2 + �2k23 = N jk0j(1 + k23

2jk0j2�
2 + O(�4)); (4.1)

N

!kjkj
=

1p
jk0j2 + �2k23

=
1

jk0j(1 �
k23

2jk0j2�
2 +O(�4)) (4.2)

with similar expressions for !mjmj and !njnj. Here O(�4) denote terms in Taylor series of order �4 and

higher. Expansions (4.1) are valid provided that k23
jk0j2�

2 << 1. We note that lv = 1=jk3j and lh = 1=jk0j are
the vertical and horizontal spectral length scales, respectively. Then the condition k23

jk0j2�
2 << 1 is equivalent

to the condition Bus � N2
0 l

2
v=f

2
0 l

2
h >> 1. Here Bus is the spectral Burger number.

Substituting expansions (4.1) in the expression for Q000
kmn we obtain after cancelling N2 and suppressing

terms of order �4 and higher

Q000
kmn(�) =

jm0j
jk0jjn0j(k

0 ^ n0) [1 + 1

2
�2(

m2
3

jm0j2 �
k23
jk0j2 �

n23
jn0j2 )] +O(�4): (4.3)

Clearly,

Q000
kmn(0) =

jm0j
jk0jjn0j(k

0 ^ n0): (4.4)

The appearance of the operator k23=jk0j2 etc. in Eqs. (4.3) is not surprising since it is related to the inversion

of (3.10). Indeed, for small � we have

~ = �(r2
h + �2

@2

@x23
)�1~q = �r�2

h (1� �2r�2
h

@2

@x23
) + O(�4) (4.5)

where the operator �r�2
h

@2

@x2
3

is �k23=jk0j2 in Fourier space.

Eqs. (4.3) show that the regularizing e�ect of rotation involves the inverses of horizontal Laplacian.

The e�ect of these operators on the dynamics is to decrease the horizontal scale. This is in fact what is

observed in numerical simulations investigating the e�ects of rotation on turbulence (McWilliams, private

communication).
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Eqs. (3.7) now take the form

@tw
0
n = �i

X
k+m=n

Q000
kmn(�)w

0
kw

0
m (4.6)

where Q000
kmn(�) is given by Eqs. (4.3). For every � 6= 0 the coe�cients Q000

kmn(�) have explicit dependence

on vertical variability parameters (k3;m3; n3 in Fourier space). For � = 0 dependence on vertical variable

disappears and we obtain complete decoupling of dynamics at every vertical layer with the vertical coordinate

x3 appearing only as a parameter. At any given vertical level the dynamics is described by 2D Euler

equations with di�erent pressures at every vertical level. There is no control of vertical shearing which can

grow exponentially. We obtain quasi-2D unbalanced dynamics of vertically stacked pancakes which was �rst

described by Lilly (1983). For � 6= 0, as shown below, Eqs. (4.3), (4.6) have a conservation law which allows

to control vertical shearing for all times. Our results reveal the regularizing e�ect of weak rotation which

introduces vertical coherence; the mechanism of the regularization is through coupling of dynamics in the

vertical direction. This regularization di�ers from regularizations based on vertical viscosity.

We note that the coe�cients Q000
kmn(�) have the following important skew-symmetric property

Q000
kmn(�) = �Q000

nmk(�): (4.7)

Eqs. (4.6) have a conservation law which simply expresses the fact that potential vorticity is conserved if

written in ~q variables. Multiplying (4.6) by w0
�n and summing over n we obtain

@t
X
n

jw0
n(t)j2 = 0 (4.8)

since

�i
X

k+m=n

Q000
kmn(�)w

0
kw

0
mw

0
�n = �i

X
k+m+n=0

Q000
kmn(�)w

0
kw

0
mw

0
n = 0: (4.9)

In (4.9) we used the fact that Q000
kmn(�) is anti-symmetric (Eqs. (4.7)) and w0

kw
0
mw

0
n is symmetric under

interchange of k and n. The conservation law for w0
n(t) implies conservation of energy for the projection of

the �eld on

qon(�) = (1� n23
2jn0j2�

2)pon + �
n3

jn0jp2n + O(�3): (4.10)

Then using the conservation law (4.8) and followingBourgeois and Beale (1994) one can prove global existence

of solutions of Eqs. (4.3), (4.6) with full control of vertical shearing for all times.

The coe�cients Qi1i2i3
kmn (�) given by Eqs. (2.25)-(2.28) can be expanded in powers of � (see Appendix).

Then we obtain

Q000
kmn(�) = Q000

kmn(0) +
1

2
�2

jm0j
jk0jjn0j(k

0 ^ n0) ( m
2
3

jm0j2 �
k23
jk0j2 �

n23
jn0j2 ) +O(�4); (4.11)
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Q̂011
kmn(�) = Q̂011

kmn(0)�
1

2
�2

k23(k
0 ^m0)(n3m3n

0 �m0 + jm0j2jn0j2 + n3m3k
0 �m0 � n3k3jm0j2)

jk0j3jm0jjn0jjmjjnj ; (4.12)

Q̂022
kmn(�) = Q̂022

kmn(0)�
1

2
�2
k0 ^m0

jk0j (
k23
jk0j2 +

m2
3

jm0j2 +
n23
jn0j2 ) +

�2
(k0 ^m0)(m3n3m

0 � n0 +m3k3jn0j2 �m3n3n
0 � k0)

jk0jjm0jjn0jjm0jjn0j +O(�4); (4.13)

Q̂012
kmn(�) = �2�m3n3(k0 ^m0)2 + (m3k

0 �m0 � k3jm0j2)(n3n0 � k0 � k3jn0j2)
jk0jjn0jjmjjm0jjn0j + O(�3); (4.14)

Q̂021
kmn(�) = 4�

m3n3(k0 ^m0)2

jnjjm0jjk0jjm0jjn0j +O(�3) (4.15)

where

Q000
kmn(0) =

jm0j
jk0jjn0j (k

0 ^ n0); Q̂022
kmn(0) =

k0 ^m0

jk0j ; Q̂012
kmn(0) = Q̂021

kmn(0) = 0; (4.16)

Q̂011
kmn(0) =

(k0 ^m0)(n3m3n
0 �m0 + jm0j2jn0j2 + n3m3k

0 �m0 � n3k3jm0j2)
jk0jjm0jjn0jjmjjnj : (4.17)

Our regularized system for wn = (w0
n; w

0
n), w

0
n = (w1

n; w
2
n) follows from Eqs. (3.7), (3.16)-(3.17). It has the

form

@tw
0
n = �i

X
k+m=n

Q000
kmn(�)w

0
kw

0
m +O(�4); (4.18)

@tw
0

n = i
X

�m = �n

k +m = n

N�m�n

!n
k3��k Jw

0

m � i
X

�m = �n

k +m = n

w0
k(t) ~Qkmn(�)w

0

m +O(�4): (4.19)

where

~Qkmn(�) =

0
@ Dkmn(�); Gkmn(�)

�Gkmn(�); Dkmn(�)

1
A = Dkmn(�)

0
@ 1 0

0 1

1
A +Gkmn(�)

0
@ 0 1

�1 0

1
A ; (4.20)

Dkmn(�) = Q̂011
kmn(�) + Q̂022

kmn(�); Gkmn(�) = �Q̂012
kmn(�) + Q̂021

kmn(�) (4.21)

with components of the matrix ~Qkmn(�) given by formulas above. For every �xed value of the parameter �

vertical shearing is controlled in the reduced equations (4.18)-(4.20) for all times. The system of equations

(4.18)-(4.20) will be called the regularized Boussinesq system in the regime of strong strati�cation and weak
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rotation. It allows us to study the regularizing e�ect of weak rotation on quasi-2D dynamics of decoupled

pancakes and its impact on AG dynamics. For � = 0 we obtain

Gkmn(0) = Q̂021
kmn(0) � Q̂012

kmn(0) = 0; Dkmn(0) = Q̂011
kmn(0) + Q̂022

kmn(0) (4.22)

where Q̂011
kmn(0) and Q̂

022
kmn(0) are given in (4.16)-(4.17). We recall that w1

n and w2
n are projections of the

total �eld on the divergent velocity potential (�) and the geostrophic departure mode, respectively. The

matrix ~Qkmn(0) is diagonal and equations (4.19) for w1
n and w2

n are coupled for � = 0 only through the

phase term iN�m�n
!n

k3��k Jw
0

m which is associated with vertical shearing of horizontally averaged buoyancy

variable (adiabatic invariant). For � 6= 0 the modes w1
n and w2

n are coupled as can be seen from Eqs. (4.20).

Non-diagonal terms are proportional to Gkmn(�); Taylor series expansion of Gkmn(�) starts with terms of

order �.

In order to obtain a simple reduced system suitable for practical numerical implementation, terms of

order � in Eqs. (4.19) are neglected. Then two scalar equations for w1 and w2 in (4.19) are coupled only

through the phase term and can be solved in parallel.

A simpli�ed reduced system consists of three prognostic equations:

@tw
0
n = �i

X
k+m=n

Q000
kmn(�)w

0
kw

0
m; (4.23)

@tw
0

n = i
X

�m = �n

k +m = n

N�m�n

!n
k3��k Jw

0

m � i
X

�m = �n

k+ m = n

w0
k(t) Dkmn(0)w

0

m: (4.24)

The scalar coe�cient Dkmn(0) in (4.24) is given by

Dkmn(0) = Q̂011
kmn(0) + Q̂022

kmn(0) = 2
k0 ^m0

jk0j
n3m3n

0 �m0 + jm0j2jn0j2
jm0jjn0jjmjjnj : (4.25)

In the derivation of (4.25) we used the relation �m = �n. The �rst term
k0^m0

jk0j in (4.25) represents advection

in physical space. Now we analyze the role of the second 0-order term


(n;m) =
n3m3n

0 �m0 + jm0j2jn0j2
jm0jjn0jjmjjnj =

jn0 ^m0j2 + (n �m)(n0 �m0)

jm0jjn0jjmjjnj : (4.26)

The coe�cient 
(n;m) can be easily computed for 4 ray families. For example, we obtain from (4.26)


(n;m) = 1 if m1 = �n1;m2 = �n2;m3 = �n3; (4.27)


(n;m) =
m2

1 +m2
2 �m2

3

jmj2 if m1 = �n1;m2 = �n2;m3 = ��n3: (4.28)
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The appearance of a wave type operator m2
1+m

2
2�m2

3

jmj2 in Eqs. (4.24) is due to polarization induced by waves;

it corresponds to wave dynamics on the reduced family of 4 rays.

The advantage of prognostic equations (4.23)-(4.24) over the diagnostic vertical velocity (omega) equa-

tion (1.17) is in improved accuracy. Near balance and some unbalanced regimes can be treated by Eqs.(4.23)-

(4.24). These regimes cannot be treated by the diagnostic equation (1.17) where �ltered initial data is

required in order for (1.17) to be a reasonable approximation of (1.16).

For � = 0 Eqs. (4.18) coincide with the familiar quasi-2D Euler system which can be seen by introducing

variables ~q and UQ2D (quasi2D potential and velocity):

~qm = jm0jw0
m; UQ2D;k = [�k2; k1; 0; 0]~qk=jk0j2: (4.29)

In this notation (3.7) is written in the form of 2D Euler equation which depends on x3 as on a parameter:

@t~qn = �i
X

k+m=n

(UQ2D;k �m)~qm: (4.30)

Then the velocity UQ2D(t; x1; x2; x3) satis�es quasi-2D Euler system

@tUQ2D + (UQ2D +UQ2D) � r0UQ2D = �r0~p; r0 �UQ2D = 0 (4.31)

which depend on x3 as a parameter, r0 = [@1; @2]. In Eqs. (4.31) UQ2D denotes horizontally averaged

velocity which is an adiabatic invariant of 3D Boussinesq equations in the strongly strati�ed limit (in the

absence of rotation).

5 Phenomenological analysis at asymptotic limit of strong rota-

tion/strati�cation in the Burger number of order one situation

At asymptotic limit of strong rotation/strati�cation, the existence of two disparate time scales indicates a

phenomenological analysis similar to that of rotation (Zhou, 1995; Mahalov and Zhou, 1996) may be appro-

priate. The aim of this approach is to estimate the averaged e�ect of rotation/strati�cation on turbulent

energy transfer. The introduction of the anisotropic time scale based on the aspect ratio parameter in the en-

ergy spectrum is an improvement over our previous phenomenological analysis of rotating turbulence. In the

context of the quasi-geostrophic equations for a Boussinesq 
uid in a uniformly rotating and stably strati�ed

environment, McWilliams et al. (1994) showed that their solutions exhibit signi�cant anisotropy associated

with the emergence of many long lived coherent vortices that control the 
ow evolution. Anisotropy of

quasi-geostrophic �eld impacts on the ageostrophic gravity wave �eld through Eqs. (3.17).

29



Among more mundane immediate consequences, exact operator splitting of the reduced equations (3.3)

reach the very roots of the mechanisms of wave-vortex interactions. Let us designate by h i the ensemble
averaging for any �eld Uy, and by Uy

F = Uy � hUyi the 
uctuations. Then the Reynolds stress operator

becomes:

hWQG;F ;WQG;F i+ hWAG;F ;WAG;F i + 2hWQG;F ;WAG;F i: (5.1)

The last tensor we shall designate as the anisotropic phase coherence tensor. It correlates the 
uctuations of

the ageostrophic WAG-�eld with the quasi-geostrophic WQG-�eld. The anisotropic phase coherence tensor

is the key player in the control of rapid 3-D pressure 
uctuations. The dependence of the full Reynolds stress

tensor on the intrinsic mean vorticity does not vanish in the limit of strongly rotating/strati�ed turbulence,

as neither the �eld WAG, nor the \anisotropic phase coherence tensor" vanish. Long-lived phase coherence

is an important part of turbulence (Bartello and Holloway, 1991; Herring and McWilliams, 1985).

In order to infer the form of the inertial-range spectrum, it is necessary to estimate the magnitude for

the triple correlations. In general, �3, the time scale for decay of triple correlations which is responsible for

inducing turbulent spectral transfer, may depend on any relevant turbulence parameters. Because energy is

conserved by the nonlinear interaction and a local cascade has been assumed, � is independent of k. Local

cascade also implies that � is explicitly proportional to �3 and depends on the wavenumber and on the power

of the omni-directional energy spectrum. A simple dimensional analysis leads to

� = A2�3(k)k
4E2(k) (5.2)

where A is a constant. We recall that !k =
q
N2
0
jk0j2
jkj2 + f20

k2
3

jkj2 . As in Section 4, we de�ned the vertical and

the horizontal spectral scales as lv =
1
jk3j , lh =

1
jk0j . If � = lv=lh = jk0j=jk3j is the ratio of these length scales

then !k =
q
N2
0

�2

�2+1 + f20
1

�2+1 .

In the strongly rotating/strati�ed case when both e�ects are of the same order (Burger number of order

one situation), the time scale for �3(k), the decorrelation of the triple velocity product, is the controlling

parameter to in
uence the energy transfer process. In a regime of high Reynolds numbers and low Rossby

and Froude numbers, turbulence is characterized by two disparate time-scales: a short anisotropic time scale

associated with the rotation/strati�cation frequency �
N = 1=
q
N2
0

�2

�2+1
+ f20

1
�2+1

(f0 = 2
0 is the Coriolis

parameter) and a nonlinear time scale. We �nd that a direct application of �3 = �
N resulted the energy

spectrum for turbulence subject to strong rotation/strati�cation:

E(k) = C
N (�
�1

N �)1=2k�2: (5.3)

We now consider the number of the non-dimensional parameters needed. For the turbulence in equilibrium

the Rossby/Froude numbers are the only relevant parameter controlling the e�ects of rotation/strati�cation

30



on the 
ow. However, for the non-equilibrium situation, a new non-dimensional parameter such as (��1
N t) is

required. Here the dimensionality is considered by introducing the aspect ratio. Our analysis suggests that

the energy transfer process in the limit of (��1
N t) ! 1 and small spectral Rossby/Froude number (strong

rotation/strati�cation) is as follows. There is inverse energy transfer by 3D QG component (McWilliams,

Weiss and Yavneh, 1994). In the meantime, there is also a direct energy cascade governed by the equation

for the inertio-gravity wave component. The energy spectrum of the full �eld Uy is given by E(k) =

C
N (�
�1

N�)

1=2k�2.

Following the usual assumption of EDQNM, we consider that the lifetime of triple correlations in rotat-

ing/strati�ed turbulence might be more accurately treated by taking into account the possibility that these

correlations decay because of the in
uence of both wave propagation and nonlinear interactions. The simple

choice

1

�3(k)
=

1

�nl(k)
+

1

�
N (k)
(5.4)

satis�es the appropriate limiting cases: �3(k) ! �nl without rotation/strati�cation and �3(k) ! �
N with

strong rotation/strati�cation. The introduction of the anisotropic time scale based on the aspect ratio pa-

rameter in the energy spectrum is an improvement over our previous phenomenological analysis (Zhou, 1995;

Mahalov and Zhou, 1996) since now the model can distinguish the anisotropic nature of rotating/strati�ed


ows. The generalized inertial range energy spectrum is

E(k) = Z2A�4=3�2=3k�5=3; (5.5)

where Z is given by

Z =
1

2

�p
Y +

q
�Y + 2

p
Y 2 + 4Z0

�
; (5.6)

Y =
3

s
1

2
+

r
1

4
+ (

4Z0
3

)3 +
3

s
1

2
�
r
1

4
+ (

4Z0
3

)3: (5.7)

The parameters A = C
�3=4
K , k
N = �

�3=2

N ��1=2 and Z0 = A2=3��1
N (�k

2)�1=3 = [Ak
N
k

]2=3. The strong

rotation/strati�cation limit then leads to C
N = 1=A = 1:22 � 1:87 for the typical range of Kolmogorov

constant. These equations reduce to the classical Kolmogorov \-5/3" spectrum when Z0 ! 0 (so that Z ! 1),

and to our rotation/strati�cation modi�ed \-2" spectrum when Z0 >> 1 (so that Y ! 0, Z ! Z
1=4
0 ). For

intermediate rotation/strati�cation rates the spectrum varies smoothly between these two limiting forms,

according to the increase of the controlling parameter Z0 with increasing ratio k
N=k. This con�rms the

numerical simulations of rotating strati�ed turbulence by M�etais et al. (1996). In their numerical simulations
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the geostrophic energy spectrum was steeper than k�3 at the small scales, whereas the ageostrophic energy

spectrum was much shallower. As a result, the large scales are dominated by geostrophic energy, while the

reverse is true of the small scales. There is a spectral gap between QG and AG spectrum with AG spectrum

being shallower than the typical k�3 QG spectrum; it varies smoothly between k�2 and k�5=3 which is in

agreement with numerical simulations of M�etais et al. (1996), Bartello et al. (1996).

The equation which determines the spectral eddy viscosity, �T (k), is given by

� = �T (k)S
2(k) = �T (k)E(k)k

3: (5.8)

Therefore, the rotation/strati�cation dependent eddy viscosity can be estimated as

�T (k) = �0[
E(k)

k
]1=2

1

1 + y�1=2
; (5.9)

where �0 is a constant and y = k3E(k)=N2. The inertial range wavenumber k can be related to the turbulent

kinetic energy K and dissipation rate �

k =
E(k)

K3=2
(3Ck=2)

3=2:

For the inertial range spectrum, Eq. (5.9) can be rewritten in physical space:

�T (x) = �00
K2

�

1

1 + 0:36K=(�
N�)
; (5.10)

The eddy viscosity above is only appropriate for homogeneous turbulence without mean velocity gradients.

The spectral time scale is an important measurement. The Kolmogorov hypothesis implies that the

energy-containing range excitation does not a�ect energy transfer within the inertial range. Therefore, the

average rate of energy dissipation is identi�ed with the rate of spectral energy transfer and the rate of energy

input. The nonlinear (or eddy turnover) time-scale, �nl(k) � [k3E(k)]�1=2, is then equivalent to the spectral

transfer time, �s. Zhou (1995) has shown that

�s(k) =
1

A2

[�nl(k)]
2

�
N (k)
; (5.11)

or more generally,

�s(k) =
1

A2

�2nl(k)

�3(k)
: (5.12)

Therefore, the time for the spectral energy transfer is increased to a value greater than �nl; thus the nonlinear

energy transfer is suppressed by rotation/strati�cation.
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6 The devil's staircase of convergence results

In this section we give a short presentation of new regularity and strong convergence results for rotating

Boussinesq equations in the Bu = O(1) regime; these are substantial improvements over the corresponding

ones in BMN (1996b) in that much less regularity is required for the initial data, with the Sobolev space

H9 being the worst and H4 being the best case. Here H� designates the space of functions with square

integrable derivatives up to order �. Any strong convergence result uniform in the parameters Roa or

1=N cannot circumvent control of small divisors and sharp estimates of both near 3- wave and near 2-

wave resonances. The o(1) non-uniform convergence results in H3 of Embid and Majda (1996) cannot be

extended to O(1=N ) uniform error without control of such near-resonances. Here we investigate the density

and probability of both 3-wave and 2-wave resonances as function of the three geometric parameters:

Bu = N2a23=f
2; �2 = 1=a22; �3 = 1=a23: (6.1)

For rare, non-generic values of these parameters, the limit equations for the ageostrophic �eld wAG can be

nonlinear:

@twAG = B2(wQG(t);wAG) +B3(wAG;wAG); (6.2)

the bilinear form B3 can easily be computed in the Craya-Herring cyclic basis and is not detailed in this

section for conciseness sake. In B3, the domain of summation K�, (k;m) 2 K�, k + m = n, depends on

(Bu; 1=a22; 1=a
2
3) = (Bu; �2; �3); that is K� = K�(Bu; �2; �3). For every �xed �2 = 1=a22 and �3 = 1=a23,

the summation set K�(Bu; �2; �3) is not empty when Bu 2 ��B(�2; �3); the set ��B is very thin, namely

it is countable. We call it a strict 3-wave resonant set. In Corollaries 6.1 and 6.2 we give an estimate of

the very small probabilistic measure of near 3-wave resonances. We mostly study the typical case when

3-wave interactions are absent, that is Bu 2/ ��B(�2; �3) and B3(wAG;wAG) is identically zero. When

Bu 2 ��B(�2; �3) is strictly resonant, B3 is non-zero and strongly depends on Bu; the sets K�(Bu; �2; �3)

with di�erent Bu do not intersect (highly nontrivial result from our study of the small divisor problem).

This implies that the operator B3 depends on resonant Bu discontinuously, every point Bu 2 ��B(�2; �3) is

a point of discontinuity of the operator B3. Since B3 is not zero, solutions of the limit system with general

initial data discontinuously depend on Bu as well. As solutions of the original rotating Euler-Boussinesq

equations depend on Bu continuously (on a small time interval [0; T1]), the convergence to solutions of the

limit equations cannot be uniform in Bu, a2, a3. This paradox we call the \Devil's staircase of convergence

results".

For Bu 2/ ��B , Eqs. (6.2) reduces to the linear equations for catalytic interactions (3.16)-(3.17). At the

same time, the equation strongly depends on �2 = 1=a22, since the 2-wave resonance condition !m = !n
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is equivalent to j �m0j=jm3j = j�n0=jn3j. For every irrational �2, B2 splits in Fourier space into uncoupled,

restricted interaction operators on 4 ray families as in (3.23). For every resonant rational point �2 2 ��2, B2

includes more interactions (much larger, but �nite number of Fourier rays), so indeed rational �2 are also

points of discontinuity for B2 and further contribute to the Devil's staircase of convergence. An important

observation is that 2-wave resonances are controlled by �2 only, not by Bu or a3. This follows from the fact

that !m = !n implies jm3j=jm̂0j = jn3j=jn̂0j. In contrast, 3-wave resonances are controlled by Bu uniformly

in �2 and �3; although strict resonant values Bu = ��B(�2; �3) depend on �2 and �3, we prove that the

estimate of the measure of almost resonant Bu does not depend on �2 and is uniform in �3. The sensitive

dependence of convergence results on the parameters Bu and a2, a3 was missed by Embid and Majda. In

fact:

Lemma 6.1:

Let N2 = f2 (that is Bu = a23). Then there exist no 3- wave resonances for 1=9 � a23 � 9.

The main convergence result of this section (Theorem 6.1) shows that the convergence is uniform and

the error is of order (1=�2 + 1=�3)=N when �2 2/ ��2
2 , Bu 2/ ��3

B (�2; �3), with the Lebesgue measure

meas(��3
B ) � �3, meas(�

�2
2 ) � �2 with �2, �3 arbitrary small. ��3

B and ��2
2 are the sets of near resonant

3 waves and 2 waves. Here jj � jj� designates the norm in the Sobolev space H�.

Theorem 6.1:

Let Bm � Bu � BM , Bm � 1 � BM . Let 0 � �1; �2 � 1 (including �1 = �2 = 0), Bu 2/ ��3
B (�2), �2 2/ ��2

2 .

Let � > 3=2, � � � > 7, M0� > 0, �2; �3 � 1. Let jjUy(0)jj� � M0�. Let Uy(t) be an exact solution of

the 3D Euler-Boussinesq equations. Let WQG(t) be the solution to the QG equations (3.7), (3.11), (3.12)

with initial data �QGU
y(0), and wAG(t) the solution to the limit ageostrophic equations (3.17) on the 4

rays (3.23) with initial data �AGUy(0). Let E(t) be the inertio-gravity waves linear propagator. Then for

0 � t � T1

jjUy(t) �WQG(t)� E(�t)wAG(t)jj� � Ca23(1=�2 + a23=�3)=N; for f < N;

� CRoaa3(1=�2 + a23=�3); for f > N ; (6.3)

where T1 depends on only on M0�; C depends only on M0�, �, BM (for f < N ) or Bm (for f > N ).

Theorem 6.2:

For �QGU
y(t) �WQG(t), under the same conditions as in Theorem 6.1, but with the weaker smoothness

� � � > 5 we have the estimate, for both inviscid and viscous cases:

jj�QGUy(t)�WQG(t)jj� � CRoaa3=�2; for f > N

� Ca23=(N�2); for f < N: (6.4)
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The same estimates hold for jjU
y
(t) �WQG(t) �E(�t)wAG(t)jj�, but with � � � > 4. Here U

y
designates

the vertical averaging.

Remark 6.1:

For the full error, the above requires smoothness of initial data in H9. For the convergence of the QG

component, only H7. This is a substantial improvement over the H37 in BMN (1996a) and the H18 in BMN

(1996b). The convergence under the H6 smoothness for the vertically averaged �elds is rather remarkable,

as it involves both the QG component and the AG component. It clearly shows that the Dynamical Taylor-

Proudman theorem established in BMN (1996 a, b) has a modi�ed version for the Bu = O(1) case, coupling

QG and AG component.

In Theorem 6.1, the measures �2 and �3 are equal to the measures of the excluded sets of a22 and Bu;

they re
ect estimates of the measure of almost resonant a2 or Bu. In fact, such estimates imply the \Arnold

Tongues" of Figure 2:

Corollary 6.1:

Let N > f and 1=Bu, �2 = 1=a22 be the resonance parameters, with 1=BM � 1=Bu � 1=Bm, and Bm = O(1).

Then

�3(1=Bu; �2; �3) = ~Ca43; (6.5)

where ~C is an absolute constant independent from �2, �3 and ~C = O(1). The probabilistic (normalized)

measure of near 3-wave resonances in 1=Bu on the interval [0; 1=Bm] is ~CBma23, and the factor a43=�3 within

the error estimate in Theorem 6.1 reduces to ~C.

Corollary 6.2:

Let N < f and Bu, �2 = 1=a22 be the resonance parameters, with 0 � Bu � a23. Then

�3(Bu; �2; �3) = C�a33; (6.6)

where C� is an absolute constant independent from �2, �3, C
� = O(1). The probabilistic (normalized)

measure of near 3-wave resonances in Bu on the interval [0; a23] is C
�a33, and the factor a33=�3 within the

error estimate in Theorem 6.1 reduces to C�.

Remark 6.2:

For N > f , 1=Bu = (f=Na3)2 is the natural resonance parameter; Bu ! +1, N ! +1 in the strongly

strati�ed limit. For N < f ; Bu! 0 as f ! +1 and Bu = (Na3=f)2 is automatically smaller than a23.

Corollary 6.1 proves that the probability (normalized measure) of near 3-wave resonances at Bu =

O(1) is very small for the atmosphere on synoptic and mesoscales; H � 10 km, and even for borderline

small/mesoscales L � 50 km, a23 � 4 � 10�2. The 3-wave almost resonant sets for such domains are very

sparse, quantitatively con�rming Bartello's (1995) picture.
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Using approximations of solutions of 3D rotating Euler-Boussinesq equations by solutions of the QG and

AG equations, we have proven global regularity of solutions of 3D Euler-Boussinesq equations with arbitrary

large initial data on arbitrary long time intervals. The global existence theorems in H3 for QG equations

obtained by Bourgeois and Beale, as well as the conservation of energy on the restricted uncoupled families

of 4 rays for WAG ensure global existence for WQG +WAG. Contrary to Bourgeois and Beale (1994), we

do not require any \prepared" initial data:

Theorem 6.3:

Let 1=Bu 2/ ��3
B (�2; �3), �2 2/ ��2

2 , Bm � Bu � BM . Let N > f , �1 = �2 = 0. Let � > 9, and M� > 0,

T � > 0 be arbitrarily large. Then there exists N� = N�(M� ; T
�; �3; �2) such that for jjUy(0)jj� � M� and

N � N�, there exists a unique regular solution Uy(t) of the 3D rotating Euler-Boussinesq equations which

belongs to H� for 0 � t � T �. For M� �xed, T � ! +1 as N� ! +1 with explicit uniform dependence

of T � on M� , �3, �2, N�. Simultaneously, we can take arbitrary large (but bounded) set of initial data:

M� ! +1 if N� ! +1, for �xed T �.

If we do not require explicit uniform estimates of T � (equivalently N�) in terms of the geometric param-

eters a2, a3 and the measures �2, �3, we can obtain the following \Poor Man's" long-time existence theorem

with weaker smoothness assumptions, valid for non-resonant Bu, but holding for all �2 and a2 and all �3

and a3 (no constraints on 2-wave resonances):

Theorem 6.4:

Let N > f , �1 = �2 = 0, Bm � Bu � BM , 1=Bu 2/ ��B(�2; �3). Let M4 > 0, T 0 > 0 be arbitrary large.

Then there exists N1 such that if jjUy(0)jj4 �M4 and N � N1, there exists a unique regular solution U
y(t),

0 � t � T 0 of the 3D rotating Euler-Boussinesq equations, which belongs to H4 as 0 � t � T 0. ForM4 �xed,

T 0 ! +1 with N1 ! +1. Simultaneously we can take arbitrary large (but bounded) sets of initial data:

M4 ! +1 if N1 ! +1, for �xed T 0. The above holds for all a2; a3, 0 < a2; a3 � 1.

Finally, using techniques from BMN (1996a, b, d) and the fact that the e�ective spectral eddy viscosities

lie between �1 and �2 (see Section 3), we obtain the regularity for all times for the 3D rotating Boussinesq-

Navier Stokes equations (the so called \primitive" equations, not to be confused with equations associated

to hydrostatic pressure hypothesis). This theorem describes the situation when N is �xed, large enough and

Bm � Bu � BM . The Navier-Stokes equations are forced by a force F(t) smooth enough. The situation is

that of non-smooth and arbitrary large initial data in H0. Then weak Leray solutions exist with maybe a

blow-up in H1.

Theorem 6.5:

Let �1 > 0, �2 > 0, N > f , Bm � Bu � BM , 1=Bu 2/ ��B(�2; �3). Let jjFjj4 + jj@tFjj1 � M04 for all

t � 0, jjUy(0)jj0 � M0. Let T̂ = M2
0=�m, where �m = min(�1; �2); T̂ depends only on jjUy(0)jj0, �1, �2.
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Let N 0 be a number which depends only on M04, �1, �2, a2, a3. Then for every �xed N � N 0 and for any

weak solution Uy(t) of the 3D rotating Boussinesq-Navier-Stokes equations which is de�ned on [0; T̂ ] and

satis�es the classical energy inequality on [0; T̂ ], the following proposition is true: Uy(t) can be extended to

0 < t < +1 and it is regular for T̂ � t < +1; it belongs to H4 and jjUy(t)jj4 � C1(M04; �1; �2) for every

t � T̂ . It F is time-independent there exists a global attractor of the \primitive" equations of geophysics,

which is bounded in H4, has a �nite fractal dimension, and every weak solution is attracted to the global

attractor as t! +1.

Remark 6.3:

No \preparation" of initial conditions is needed, contrary to the special restricted results of Chemin (1995).

This theorem holds for all a2, 0 < a2 � 1. This theorem resolves problems of existence of attractors of for

the \primitive" equations of geophysics raised by Lions, Temam and Wang (1994). These authors are able

to give only conditional theorems assuming a priori regularity in 3D. We demonstrate the regularizing e�ects

of mixed rotation/strati�cation in the Bu = O(1) regimes.

7 Concluding remarks

In this paper, we have treated the problem of strongly strati�ed limit of rotating Boussinesq equations via two

complementary approaches. First, we have illustrated the procedure for obtaining the dynamical decoupling

of the vortical and inertial-gravity wave components of the total 
ow �eld. The `split' of the energy transfer

of the vortical and the wave components is established. As a result, analysis of 3D Boussinesq system has

been reduced to several simple, well de�ned steps. We give explicit phase formulas for the Doppler phase shift

induced by the interaction between the waves and the mean 
ow. In the regime of strong strati�cation and

weak rotation we proposed regularized reduced equations with control of vertical shearing for all times. The

regularizing e�ect of weak rotation principally di�ers from previously known regularizations which are based

on vertical viscosity. Second, we have utilized the fact that the time scales of vortical and inertial-gravity

wave components are disparate. Several useful results can be deduced without going through the steps

outlined above. For ageostrophic dynamics, we demonstrate gradual unfreezing of energy cascades as Bu

varies from zero to in�nity. The energy spectrum and the anisotropic spectral eddy viscosity can be derived

with an explicit dependence on the anisotropic rotation/strati�cation time scale. This time scale, in turn,

depends on the aspect ratio parameter (ratio of the vertical and the horizontal length scale). Our analysis

provides a potential context for investigations of the Garrett-Munk spectrum induced by the interaction

between inertio-gravity waves and turbulence (Garrett and Munk, 1979).
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A Appendix: Dependence of the coe�cients Qi1i2i3
kmn on � = f=N

The coe�cients Qi1i2i3
kmn (�) given by Eqs. (2.25)-(2.28) can be expanded in powers of � = f=N as follows

Q012
kmn(�) = �2��m�n(k

0 ^m0)2

�njk0jjm0jjn0j + O(�3);

Q102
mkn(�) = �2� (m3k

0 �m0 � k3jm0j2)(n3n0 � k0 � k3jn0j2)
jk0jjn0jjmjjm0jjn0j + O(�3)

Q021
kmn(�) = 2�

�m�n(k0 ^m0)2

�mjk0jjm0jjn0j + O(�3); Q201
mkn(�) = 2�

�m�n(k0 ^m0)2

�mjk0jjm0jjn0j +O(�3)

Q011
kmn(�) = Q011

kmn(0)�
1

2
�2
k23(k

0 ^m0)(n3m3n
0 �m0 + jn0j2jm0j2)

jk0j3jm0jjn0jjmjjnj +O(�4);

Q101
mkn(�) = Q101

mkn(0) �
1

2
�2
k23�n(k

0 ^m0)(m3k
0 �m0 � k3jm0j2)

jk0j3jmjjm0jjn0j +O(�4);

Q022
kmn(�) = Q022

kmn(0) �
1

2
�2
k0 ^m0

jk0j (
k23
jk0j2 +

m2
3

jm0j2 +
n23
jn0j2 ) + �2

(k0 ^m0)m3n3m
0 � n0

jk0jjm0jjn0jjm0jjn0j + O(�4);

Q202
mkn(�) = Q202

mkn(0) + �2
m3(k0 ^m0)(k3jn0j2 � n3n

0 � k0)
jk0jjm0jjn0jjm0jjn0j + O(�4); where

Q011
kmn(0) =

k0 ^m0

jk0jjm0jjn0jjmjjnj(n3m3n
0 �m0 + jm0j2jn0j2); Q022

kmn(0) =
1

jk0j (k
0 ^m0);

Q101
mkn(0) =

�n(k0 ^m0)(m3k
0 �m0 � k3jm0j2)

jk0jjm0jjn0jjmj ; Q202
mkn(0) = 0;

Q012
kmn(0) = Q021

kmn(0) = Q102
mkn(0) = Q201

mkn(0) = 0:
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